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 Potential Benefits

1. Introduction

 Control Objectives

a) to ensure all the vehicles in the same group to move at the same speed with the leader 

b) to maintain the desired spaces between adjacent vehicles

 Vehicular Platoon 

 Improve traffic efficiency, enhance road safety, and 

reduce fuel consumption, etc. 

 The earliest implementation can date back to the 

PATH program during the last eighties 

 Real-world experiments

USA - PATH Europe - SARTRE Japan - Energy ITS
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1. Introduction

 View platoons from a networked control perspective

Typical Communication Topology

Connected Vehicle by V2V 

Different Communication Topologies

...
( f )

( e )

...

...
( c )

...

...
( d )

( b )

...
( a )

 New challenges naturally arise due to the variety of topologies, in particular when 

considering issues like nonlinear dynamic, input constraints etc. 

 New challenges

How to design a distributed controller for a heterogeneous platoon considering nonlinear 

dynamics, input constraints and variety of communication topologies?
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1. Introduction

 Model Predictive Control

 MPC: control input is obtained by numerically optimizing a finite 

horizon optimal control problem 

 Benefits: both nonlinearity and constraints can be explicitly handled

 It is typically used for a single-agent system.

Distributed 

MPC

 Distributed MPC

1. W. B. Dunbar and R. M. Murray "Distributed receding horizon control for multi-vehicle formation

stabilization", Automatica, vol. 42, no. 4, pp.549 -558, 2006.

2. T. Keviczky, F. Borrelli and G. J. Balas, "Decentralized receding horizon control for large scale

dynamically decoupled systems", Automatica. vol. 42, no. 12, pp.2105 -2115, 2006.

3. H. Li, Y. Shi, “Distributed model predictive control of constrained nonlinear systems with

communication delays”. Systems & Control Letters, vol. 62, no.10, pp. 819-826, 2013,

4. R R. Negenborn, J M Maestre. “Distributed model predictive control: An overview and roadmap

of future research opportunities”. Control Systems, IEEE, vol. 34, no.4, pp. 87-97, 2014.

 The majority only focus on the stabilization of the system with a common set point

 Assuming all agents a priori know the desired equilibrium information. 

For a vehicle platoon, such a common set point corresponds to the leader’s state. 

This work presents a DMPC algorithm for heterogeneous platoons with 

unidirectional topologies and a priori unknown desired set point. 

Impractical

Predicted trajectory

Assumed trajectory
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2. Platoon model and controller design

 Vehicle Dynamics

Vehicle Dynamics

...... LV

01node iN i-1

v0

t

Information Flow Topology

dr,i

ddes,i

Formation Geometry 

Controller Ci Ci-1

Distributed Controller

ui ui-1

C1

u1

CN

uN

 𝑠𝑖 𝑡 = 𝑣𝑖 𝑡
𝜂T,𝑖
𝑟w,𝑖

𝑇𝑖 𝑡 = 𝑚𝑖  𝑣𝑖 𝑡 + 𝐶A,𝑖𝑣𝑖
2 𝑡 + 𝑚𝑖𝑔𝑓𝑖

𝜏𝑖  𝑇𝑖 𝑡 + 𝑇𝑖 𝑡 = 𝑢𝑖 𝑡

𝒙𝑖 𝑡 + 1 = 𝜙𝑖 𝒙𝑖 +𝝍𝑖 ∙ 𝑢𝑖 𝑡

Discrete Domain

 Control Objectives

 
lim
𝑡→∞

𝑣𝑖 𝑡 − 𝑣0 𝑡 = 0

lim
𝑡→∞

𝑠𝑖−1 𝑡 − 𝑠𝑖 𝑡 − 𝑑𝑖−1,𝑖 = 0
, 𝑖 ∈ 𝒩 𝑣0 𝑡 : leader’s speed

𝑑𝑖−1,𝑖 = 𝑑0Constant spacing policy 

a) to ensure the same speed with the leader 

b) to maintain the desired spaces between adjacent vehicles

s𝑖 𝑡 : postion; 𝑣𝑖 𝑡 : speed;

𝑇𝑖 𝑡 : Torque ;
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2. Platoon model and controller design

 Communication Topology

 Viewed as a directed graph G, and use Pinning matrix, Adjacent matrix and Laplacian

matrix to model the connections. 

 The communication is assumed as to be perfect. There is no delay, data loss etc.

 Algebraic Graph Theory

 Definitions

LeaderFollowers

𝒜𝑁= 𝑎𝑖𝑗 ∈ ℝ𝑁×𝑁

• Adjacent Matrix

 
𝑎𝑖𝑗 = 1, 𝑖𝑓 𝛼𝑗 , 𝛼𝑖 ∈ 𝐸

𝑎𝑖𝑗 = 0, 𝑖𝑓 𝛼𝑗 , 𝛼𝑖 ∉ 𝐸

To model the information 

flow among followers

• Laplacian Matrix

ℒ = 𝑙𝑖𝑗 ∈ ℝ𝑁×𝑁

𝑙𝑖𝑗 =  
−𝑎𝑖𝑗 , 𝑖 ≠ 𝑗

 𝑘=1
𝑁 𝑎𝑖𝑘 , 𝑖 = 𝑗

.

An induced matrix from 

adjacent matrix

• Pinning Matrix

𝒫 =
𝓅1

⋱
𝓅𝑁

𝓅𝑖= 1 , 𝑖𝑓 𝛼0, 𝛼𝑖 ∈ 𝐸

To model the information 

flow from the leader to 

followers
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2. Platoon model and controller design

 Communication Topology
 Example: Predecessor-leader  following Topology

𝒫 =

1
1

⋱
1

01N-2N N-1

...

𝒜𝑁=

0
1 0

1 0
⋱ ⋱

1 0

ℒ =

0
−1 1

−1 1
⋱ ⋱

−1 1
 Some Definitions

1) Spanning tree. There exists a root node such that there

is a directed path from this node to every other node.

2) Neighbor set. ℕ𝑖 =  𝑗 𝑎𝑖𝑗 = 1, 𝑗 ∈ 𝒩

ii1 i2 i3 i4

ℕ𝑖 = 𝑖1, 𝑖2, 𝑖3, 𝑖4

jj1 j2 j3 j4

𝕆𝑗 = 𝑗1, 𝑗2, 𝑗3, 𝑗4 .

 The set ℕ𝑖 means that node 𝑖 can receive the information of 

any 𝑗 ∈ ℕ𝑖. 

3)  Define a dual set 𝕆𝑖 =  𝑗 𝑎𝑗𝑖 = 1, 𝑗 ∈ 𝒩 , which means 

that node 𝑖 sends its information to any 𝑗 ∈ 𝕆𝑖. 
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2. Platoon model and controller design

 Design of DMPC algorithm

 Design local open-loop optimal control problem in each node;

 Every local problem can only use the information of neighboring nodes to compute its 

control input;

 Then they exchange information;

 Some notations

The leader is assumed to run at a constant speed, i.e.,𝑠0 = 𝑣0𝑡.

 
𝑥des,𝑖 𝑡 = 𝑠des,𝑖 𝑡 , 𝑣des,𝑖 𝑡 , 𝑇des,𝑖 𝑡

𝑇

𝑢des,𝑖 𝑡 = 𝑇des,𝑖 𝑡 ,

Desired set point of state 

and input of node 𝑖
Only for analysis

The nodes in ℕ𝑖 are numbered as 𝑖1, 𝑖2, ⋯ , 𝑖𝑚

𝑦−𝑖 𝑡 = 𝑦11
𝑇 𝑡 , 𝑦12

𝑇 𝑡 ,⋯ , 𝑦1𝑚
𝑇 𝑡

𝑇
,

𝑢−𝑖 𝑡 = 𝑢𝑖1 𝑡 , 𝑢𝑖2 𝑡 ,⋯ , 𝑢𝑖𝑚 𝑡
𝑇

Over the prediction horizon 𝑡, 𝑡 + 𝑁𝑝 , we

define three types of trajectories:

𝑦𝑖
𝑝  𝑘 𝑡 : Predicted output trajectory,

𝑦𝑖
∗  𝑘 𝑡 : Optimal output trajectory,

𝑦𝑖
𝑎  𝑘 𝑡 : Assumed output trajectory

𝑠des,𝑖 𝑡 = 𝑠0 𝑡 − 𝑖 ∙ 𝑑0,
𝑣des,𝑖 𝑡 = 𝑣0

Three types of control inputs are also defined,

𝑢𝑖
𝑝  𝑘 𝑡 : Predicted control input,

𝑢𝑖
∗  𝑘 𝑡 : Optimal control input,

𝑢𝑖
𝑎  𝑘 𝑡 : Assumed control input Standard process for DMPC
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2. Platoon model and controller design

 Local open-loop optimal control problem

min
𝑈𝑖

𝐽𝑖 𝒚𝑖
𝑝  : 𝑡 , 𝑢𝑖

𝑝  : 𝑡 , 𝒚𝑖
𝑎  : 𝑡 , 𝒚−𝑖

𝑎  : 𝑡

=  

𝑘=0

𝑁𝑝−1

𝑙𝑖 𝒚𝑖
𝑝  𝑘 𝑡 , 𝑢𝑖

𝑝  𝑘 𝑡 , 𝒚𝑖
𝑎  𝑘 𝑡 , 𝒚−𝑖

𝑎  𝑘 𝑡

s.t.

 𝒙𝑖
𝑝  𝑘 + 1 𝑡 = 𝜙𝑖 𝒙𝑖

𝑝  𝑘 𝑡 + 𝝍𝑖 ∙ 𝑢𝑖
𝑝  𝑘 𝑡

𝒚𝑖
𝑝  𝑘 𝑡 = 𝜸𝒙𝑖

𝑝  𝑘 𝑡
,

𝑘 = 0,⋯ ,𝑁𝑝 − 1

𝒙𝑖
𝑝  0 𝑡 = 𝒙𝑖 𝑡

𝑢𝑖
𝑝  𝑘 𝑡 ∈ 𝒰

𝒚𝑖
𝑝

 𝑁𝑝 𝑡 =
1

𝕀𝑖
 

𝑗∈𝕀𝑖

𝒚𝑗
𝑎  𝑁𝑝 𝑡 −  𝒅𝑗,𝑖

𝑇𝑖
𝑝

 𝑁𝑝 𝑡 = ℎ𝑖 𝑣𝑖
𝑝

 𝑁𝑝 𝑡

Cost function

Dynamic constraints in 

predictive horizon

Input constraints

Terminal Constraints

stability

Problem ℱ𝑖: For 𝑖 ∈ 1,2, … , 𝑁 at time 𝑡

This is based on the local average of neighboring outputs. Thus, 

any node does not need to a prior know the desired set point, 
Move at constant speed at the 

end of predictive horizon
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2. Platoon model and controller design

 Local open-loop optimal control problem

 Construction of local cost function

𝑙𝑖 𝑦𝑖
𝑝  𝑘 𝑡 , 𝑢𝑖

𝑝  𝑘 𝑡 , 𝑦𝑖
𝑎  𝑘 𝑡 , 𝑦−𝑖

𝑎  𝑘 𝑡

= 𝑄𝑖 𝑦𝑖
𝑝  𝑘 𝑡 − 𝑦des,𝑖  𝑘 𝑡

2

+ 𝑅𝑖 𝑢𝑖
𝑝  𝑘 𝑡 − ℎ𝑖 𝑣𝑖

𝑝  𝑘 𝑡
2

+ 𝐹𝑖 𝑦𝑖
𝑝  𝑘 𝑡 − 𝑦𝑖

𝑎  𝑘 𝑡
2

+  

𝑗∈ℕ𝑖

𝐺𝑖 𝑦𝑖
𝑝  𝑘 𝑡 − 𝑦𝑗

𝑎  𝑘 𝑡 −  𝑑𝑖,𝑗 2

Tracking leader 𝑝𝑖 = 0, 𝑄𝑖 = 0

Penalize the input 𝑅𝑖 ≥ 0

Maintain its assumed output 𝐹𝑖 ≥ 0

Maintain the assumed 

output of its neighbors
𝐺𝑖 ≥ 0

Design Parameters

jj1 j2 j3 j4

𝕆𝑗 = 𝑗1, 𝑗2, 𝑗3, 𝑗4 .

ii1 i2 i3 i4

ℕ𝑖 = 𝑖1, 𝑖2, 𝑖3, 𝑖4

This output is sent to the nodes in set 𝕆𝑖

Node 𝑖 tries to maintain the output as 

close to the assumed trajectories of its 

neighbors (i.e., 𝑗 ∈ ℕ𝑖) as possible

Stability
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2. Platoon model and controller design

 Local open-loop optimal control problem

 Algorithm of distributed model predictive control

(I) Initialization At time 𝑡 = 0, assume that all followers 

are moving at a constant speed  
𝑢𝑖
𝑎  𝑘 0 = ℎ𝑖 𝑣𝑖 0

𝑦𝑖
𝑎  𝑘 0 = 𝑦𝑖

𝑝  𝑘 0
, 𝑘 = 0,1,⋯ ,𝑁𝑝 − 1,

i

t 1|t 2|t Np|t

ui*(0|t) ui*(1|t) ui*(Np-1|t)

...

...

t+1 1|t+1 Np-1|t+1...

...

Np|t+1

t-step  

(t+1)-step

Local optimal control  problem

ui
a(0|t+1) ui

a(1|t+1) ui
a(Np-2|t+1) ui

a(Np-1|t+1)

...

j

uj*(0|t) uj*(1|t) uj*(Np-1|t)

... for

t 1|t 2|t Np|t...

Local optimal control  problem

uj
a(0|t+1) uj

a(1|t+1) uj
a(Np-2|t+1) uj

a(Np-1|t+1)

for

transmission

For control For control

(II) Iteration of DMPC: At 𝑡 > 0, for all node 𝑖 = 1,⋯ ,𝑁

1. Optimize Problemℱ𝑖, yielding optimal control sequence 𝑢𝑖
∗  𝑘 𝑡 , 𝑘 = 0,1,⋯ ,𝑁𝑝 − 1

2. Compute the assumed control input (i.e., 𝑢𝑖
𝑎  𝑘 𝑡 + 1 ) for next 

step by disposing first term and adding one additional term

𝑢𝑖
𝑎  𝑘 𝑡 + 1 =  

𝑢𝑖
∗  𝑘 + 1 𝑡 , 𝑘 = 0,1,⋯ ,𝑁𝑝 − 2

ℎ𝑖 𝑣𝑖
∗  𝑁𝑝 𝑡 , 𝑘 = 𝑁𝑝 − 1

3. Transmit 𝑦𝑖
𝑎  𝑘 𝑡 + 1 to the nodes in set 𝕆𝑖, 

Receive 𝑦−𝑖
𝑎  𝑘 𝑡 + 1 from the nodes in set ℕ𝑖; 

Compute 𝑦des,𝑖  𝑘 𝑡 + 1 if ℙ𝑖 ≠ ∅

4. Implement the control effort, i.e., 

𝑢𝑖 𝑡 = 𝑢𝑖
∗  0 𝑡

5. Increment 𝑡 and go to step (1).

What’s the requirement for stability?
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3. Stability analysis of DMPC

 Main strategy  standard

The main strategy is to construct a proper Lyapunov function 

for the platoon and prove its decreasing property
sum of local cost functions

Individual Local costTerminal Constraint Sum of local cost Sufficient conditions

Recursive feasibility Monotonically decrease

 Terminal constraint analysis

𝒚𝑖
𝑝

 𝑁𝑝 𝑡 =
1

𝕀𝑖
 

𝑗∈𝕀𝑖

𝒚𝑗
𝑎  𝑁𝑝 𝑡 −  𝒅𝑗,𝑖  

lim
𝑡→∞

𝑣𝑖 𝑡 − 𝑣0 𝑡 = 0

lim
𝑡→∞

𝑠𝑖−1 𝑡 − 𝑠𝑖 𝑡 − 𝑑𝑖−1,𝑖 = 0
, 𝑖 ∈ 𝒩

How ?

lim
𝑡→∞

𝑦𝑖
𝑝

 𝑁𝑝 𝑡 − 𝑦des,𝑖  𝑁𝑝 𝑡 = 0 Consensus of terminal constraints

Theorem 1. If 𝔾 contains a spanning tree rooting from the leader, the terminal state in the predictive

horizon of problem ℱ𝑖 asymptotically converges to the desired state, i.e.,

lim
𝑡→∞

𝑦𝑖
𝑝

 𝑁𝑝 𝑡 − 𝑦des,𝑖  𝑁𝑝 𝑡 = 0.

where 𝑦des,𝑖  𝑁𝑝 𝑡 = 𝑠0  𝑁𝑝 𝑡 − 𝑖 ∙ 𝑑0, 𝑣0
𝑇

.

 A spanning tree is also a prerequisite to achieve a stable platoon. 

 Intuitively, it means that every follower can obtain the leader information directly or indirectly.
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3. Stability analysis of DMPC

Individual Local costTerminal Constraint Sum of local cost Sufficient conditions

Recursive feasibility Monotonically decrease

 Terminal constraint analysis

Assumption 1 (Unidirectional topology): The graph 𝔾 contains a spanning tree rooting at the leader, 

and the communications are unidirectional from preceding vehicles to downstream ones

...
( d )

( c )

...

...
( b )

...
( a )

012N N-1

...
N-2

LV

Theorem 2. If 𝔾 satisfies Assumption 1, the 

terminal state in the predictive horizon of 

problem ℱ𝑖 converges to the desired state at 

most N steps, i.e.,

𝑦𝑖
𝑝

 𝑁𝑝 𝑡 = 𝑦des,𝑖  𝑁𝑝 𝑡 , 𝑡 ≥ 𝑁.

Lemma (Recursive feasibility). If we replace 

(13d) with 𝑦𝑖
𝑝

 𝑁𝑝 𝑡 = 𝑦des,𝑖  𝑁𝑝 𝑡 , then 

problem ℱ𝑖 has

𝑦𝑖
𝑝  : 𝑡 , 𝑢𝑖

𝑝  : 𝑡 = 𝑦𝑖
𝑎  : 𝑡 , 𝑢𝑖

𝑎  : 𝑡

as a feasible solution for any time 𝑡 > 0

Suboptimal solution
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3. Stability analysis of DMPC

Individual Local costTerminal Constraint Sum of local cost Sufficient conditions

Recursive feasibility Monotonically decrease

 Analysis of local cost function

Theorem 3. If 𝔾 satisfies Assumption 1, each local cost function satisfies

𝐽𝑖
∗ 𝑡 + 1 − 𝐽𝑖

∗ 𝑡 ≤ −𝑙𝑖 𝑦𝑖
∗  0 𝑡 , 𝑢𝑖

∗  0 𝑡 , 𝑦𝑖
𝑎  0 𝑡 , 𝑦−𝑖

𝑎  0 𝑡 + 𝜀𝑖 ,

𝑡 > 𝑁
where

𝜀𝑖 =  

𝑘=1

𝑁𝑝−1

 

𝑗∈ℕ𝑖

𝐺𝑖 𝑦𝑗
∗  𝑘 𝑡 − 𝑦𝑗

𝑎  𝑘 𝑡
2
− 𝐹𝑖 𝑦𝑖

∗  𝑘 𝑡 − 𝑦𝑖
𝑎  𝑘 𝑡

2

It gives an upper bound on the decline of local cost function. If we have

𝜀𝑖 ≤ 𝑙𝑖 𝑦𝑖
∗  0 𝑡 , 𝑢𝑖

∗  0 𝑡 , 𝑦𝑖
𝑎  0 𝑡 , 𝑦−𝑖

𝑎  0 𝑡

Then the system is stable 

sum of local cost functions

there is no intuitive way to 

adjust control parameters. 

Sketch of Proof: at time 𝑡 + 1, 𝑡 ≥ 𝑁, a feasible control for ℱ𝑖 is 𝑢𝑖
𝑝  : 𝑡 + 1 = 𝑢𝑖

𝑎  : 𝑡 + 1

𝐽𝑖
∗ 𝑡 + 1 ≤ 𝐽𝑖 𝑦𝑖

𝑎  : 𝑡 + 1 , 𝑢𝑖
𝑎  : 𝑡 + 1 , 𝑦𝑖

𝑎  : 𝑡 + 1 , 𝑦−𝑖
𝑎  : 𝑡 + 1 Give relationship 

between 𝐽𝑖
∗ 𝑡 + 1

and 𝐽𝑖
∗ 𝑡
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3. Stability analysis of DMPC

Individual Local costTerminal Constraint Sum of local cost Sufficient conditions

Recursive feasibility Monotonically decrease

 Sum of local cost functions

Theorem 4. If 𝔾 satisfies Assumption 1, , J_Σ^* (t) satisfies

𝐽Σ
∗ 𝑡 + 1 − 𝐽Σ

∗ 𝑡 ≤ − 

𝑖=1

𝑁

𝑙𝑖 𝑦𝑖
∗  0 𝑡 , 𝑢𝑖

∗  0 𝑡 , 𝑦𝑖
𝑎  0 𝑡 , 𝑦−𝑖

𝑎  0 𝑡 +  

𝑘=1

𝑁𝑝−1

𝜀Σ 𝑘 , 𝑡 > 𝑁

where

𝜀Σ 𝑘 = 

𝑖=1

𝑁

 

𝑗∈𝕆𝑖

𝐺𝑗 𝑦𝑖
∗  𝑘 𝑡 − 𝑦𝑖

𝑎  𝑘 𝑡
2
− 𝐹𝑖 𝑦𝑖

∗  𝑘 𝑡 − 𝑦𝑖
𝑎  𝑘 𝑡

2

Sketch of Proof:

𝐽Σ
∗ 𝑡 =  

𝑖=1

𝑁

𝐽𝑖
∗ 𝑦𝑖

∗  : 𝑡 , 𝑢𝑖
∗  : 𝑡 , 𝑦𝑖

𝑎  : 𝑡 , 𝑦−𝑖
𝑎  : 𝑡

To change ℕ𝑖 to 𝕆𝑖 by considering all followers in the platoon

𝐽Σ
∗ 𝑡 + 1 − 𝐽Σ

∗ 𝑡 ≤ − 

𝑖=1

𝑁

𝑙𝑖 𝑦𝑖
∗  0 𝑡 , 𝑢𝑖

∗  0 𝑡 , 𝑦𝑖
𝑎  0 𝑡 , 𝑦−𝑖

𝑎  0 𝑡 + 

𝑖=1

𝑁

𝜀𝑖 .
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3. Stability analysis of DMPC

Individual Local costTerminal Constraint Sum of local cost Sufficient conditions

Recursive feasibility Monotonically decrease

 Sufficient conditions

Theorem 5. If G satisfies Assumption 1, a platoon under proposed DMPC is asymptotically 

stable if satisfying

𝐹𝑖≥  

𝑗∈𝕆𝑖

𝐺𝑗 , 𝑖 ∈ 𝒩

Sketch of Proof: 𝑧𝑇  

𝑗∈𝕆𝑖

𝐺𝑗 − 𝐹𝑖 𝑧 ≤ 0, ∀ 𝑧 ∈ ℝ2

𝐽Σ
∗ 𝑡 + 1 − 𝐽Σ

∗ 𝑡 ≤ − 

𝑖=1

𝑁

𝑙𝑖 𝑦𝑖
∗  0 𝑡 , 𝑢𝑖

∗  0 𝑡 , 𝑦𝑖
𝑎  0 𝑡 , 𝑦−𝑖

𝑎  0 𝑡

strictly monotonically decreasing

To ensure stability implies that all nodes in 𝕆𝑖 should not rely heavily on the information of 

node 𝑖 unless node 𝑖 shows good-enough consistence with its own assumed trajectory

jj1 j2 j3 j4

𝕆𝑗 = 𝑗1, 𝑗2, 𝑗3, 𝑗4 .

Maintain its assumed output
Maintain the assumed 

output of its neighbors
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4. Simulation results

𝑣0 =  
20  𝑚 𝑠 𝑡 ≤ 1 𝑠
20 + 2𝑡  𝑚 𝑠 1𝑠 < 𝑡 ≤ 2 𝑠
22  𝑚 𝑠 𝑡 > 2𝑠

The desired trajectory 
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 This work proposes a novel DMPC algorithm for vehicle platoons with nonlinear 

dynamics and unidirectional topologies

 A sufficient condition is derived to guarantee asymptotic stability. 

 This approach does not require all vehicles a priori know the desired set point

 Key points

Asymptotic stability for the whole system Consensus of terminal state

 Spanning tree  infinite time

 Unidirectional topology  finite time
 An explicit sufficient condition on the 

weights of the cost functions

 Future work

1. Topology aspect  spanning tree ?

2. Communication issue  Time delay ?

3. Computational issue  feasibility & efficiency ?

4. Dynamics  uncertainty & robustness DMPC ?
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( d )
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